Staff Solutions to Problem Set 9
نویسنده
چکیده
Problem 1. Suppose you have seven dice—each a different color of the rainbow; otherwise the dice are standard, with faces numbered 1 to 6. A roll is a sequence specifying a value for each die in rainbow (ROYGBIV) order. For example, one roll is .3; 1; 6; 1; 4; 5; 2/ indicating that the red die showed a 3, the orange die showed 1, the yellow 6,. . . . For the problems below, describe a bijection between the specified set of rolls and another set that is easily counted using the Product, Generalized Product, and similar rules. Then write a simple arithmetic formula, possibly involving factorials and binomial coefficients, for the size of the set of rolls. You do not need to prove that the correspondence between sets you describe is a bijection, and you do not need to simplify the expression you come up with. For example, let A be the set of rolls where 4 dice come up showing the same number, and the other 3 dice also come up the same, but with a different number. Let R be the set of seven rainbow colors and S WWD Œ1; 6 be the set of dice values. Define B WWD PS;2 R3, where PS;2 is the set of 2-permutations of S and R3 is the set of size-3 subsets of R. Then define a bijection from A to B by mapping a roll in A to the sequence in B whose first element is a pair consisting of the number that came up three times followed by the number that came up four times, and whose second element is the set of colors of the three matching dice. For example, the roll
منابع مشابه
An employee transporting problem
An employee transporting problem is described and a set partitioning model is developed. An investigation of the model leads to a knapsack problem as a surrogate problem. Finding a partition corresponding to the knapsack problem provides a solution to the problem. An exact algorithm is proposed to obtain a partition (subset-vehicle combination) corresponding to the knapsack solution. It require...
متن کاملCharacterization of efficient points of the production possibility set under variable returns to scale in DEA
We suggest a method for finding the non-dominated points of the production possibility set (PPS) with variable returns to scale (VRS) technology in data envelopment analysis (DEA). We present a multiobjective linear programming (MOLP) problem whose feasible region is the same as the PPS under variable returns to scale for generating non-dominated points. We demonstrate that Pareto solutions o...
متن کاملWell-dispersed subsets of non-dominated solutions for MOMILP problem
This paper uses the weighted L$_1-$norm to propose an algorithm for finding a well-dispersed subset of non-dominated solutions of multiple objective mixed integer linear programming problem. When all variables are integer it finds the whole set of efficient solutions. In each iteration of the proposed method only a mixed integer linear programming problem is solved and its optimal solutions gen...
متن کاملSolving Environmental/Economic Power Dispatch Problem by a Trust Region Based Augmented Lagrangian Method
This paper proposes a Trust-Region Based Augmented Method (TRALM) to solve a combined Environmental and Economic Power Dispatch (EEPD) problem. The EEPD problem is a multi-objective problem with competing and non-commensurable objectives. The TRALM produces a set of non-dominated Pareto optimal solutions for the problem. Fuzzy set theory is employed to extract a compromise non-dominated sol...
متن کاملAn Aircraft Service Staff Rostering using a Hybrid GRASP Algorithm
The aircraft ground service company is responsible for carrying out the regular tasks to aircraft maintenace between their arrival at and departure from the airport. This paper presents the application of a hybrid approach based upon greedy randomized adaptive search procedure (GRASP) for rostering technical staff such that they are assigned predefined shift patterns. The rostering of staff is ...
متن کاملAn Optimum Algorithm for Single Machine with Early/Tardy Cost
The problem of determining the sequence of a set of jobs with the objective function of minimizing the maximum earliness and tardiness in one machine is studied. 
 Production systems like JIT are one of the many applications of the problem. This problem is studied in special cases and their optimal solutions are introduced with simple orders. In general, some effective conditions for ne...
متن کامل